Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(14): 4078-4092, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173817

RESUMO

Untangling how factors such as environment, host, associations among bacterial species and dispersal predict microbial composition is a fundamental challenge. In this study, we use complementary machine-learning approaches to quantify the relative role of these factors in shaping microbiome variation of the blacklegged tick Ixodes scapularis. I. scapularis is the most important vector for Borrelia burgdorferi (the causative agent for Lyme disease) in the U.S. as well as a range of other important zoonotic pathogens. Yet the relative role of the interactions between pathogens and symbionts compared to other ecological forces is unknown. We found that positive associations between microbes where the occurrence of one microbe increases the probability of observing another, including between both pathogens and symbionts, was by far the most important factor shaping the tick microbiome. Microclimate and host factors played an important role for a subset of the tick microbiome including Borrelia (Borreliella) and Ralstonia, but for the majority of microbes, environmental and host variables were poor predictors at a regional scale. This study provides new hypotheses on how pathogens and symbionts might interact within tick species, as well as valuable predictions for how some taxa may respond to changing climate.


Assuntos
Borrelia burgdorferi , Borrelia , Ixodes , Doença de Lyme , Microbiota , Animais , Doença de Lyme/microbiologia , Ixodes/microbiologia , Borrelia burgdorferi/genética , Microbiota/genética
2.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188003

RESUMO

Rickettsia buchneri is the principal symbiotic bacterium of the medically significant tick Ixodes scapularis This species has been detected primarily in the ovaries of adult female ticks and is vertically transmitted, but its tissue tropism in other life stages and function with regard to tick physiology is unknown. In order to determine the function of R. buchneri, it may be necessary to produce ticks free from this symbiont. We quantified the growth dynamics of R. buchneri naturally occurring in I. scapularis ticks throughout their life cycle and compared it with bacterial growth in ticks in which symbiont numbers were experimentally reduced or eliminated. To eliminate the bacteria, we exposed ticks to antibiotics through injection and artificial membrane feeding. Both injection and membrane feeding of the antibiotic ciprofloxacin were effective at eliminating R. buchneri from most offspring of exposed females. Because of its effectiveness and ease of use, we have determined that injection of ciprofloxacin into engorged female ticks is an efficient means of clearing R. buchneri from the majority of progeny.IMPORTANCE This paper describes the growth of symbiotic Rickettsia buchneri within Ixodes scapularis through the life cycle of the tick and provides methods to eliminate R. buchneri from I. scapularis ticks.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Ixodes/microbiologia , Rickettsia/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Feminino , Genes Bacterianos , Masculino , RNA Ribossômico 16S , Rickettsia/genética , Rickettsia/crescimento & desenvolvimento , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...